The complete (k, 3)-arcs of PG(2,q), q≤13

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complete arcs of PG(2,31)

We obtained a full computer classification of all complete arcs in the Desarguesian projective plane of order 31 using essentially the same methods as for earlier results for planes of smaller order, i.e., isomorph-free backtracking using canonical augmentation. We tabulate the resulting numbers of complete arcs according to size and automorphism group. We give explicit descriptions for all com...

متن کامل

The complete k - arcs of PG ( 2 , 27 ) and PG ( 2 , 29 )

A full classification (up to equivalence) of all complete k-arcs in the Desarguesian projective planes of order 27 and 29 was obtained by computer. The resulting numbers of complete arcs are tabulated according to size of the arc and type of the automorphism group, and also according to the type of algebraic curve into which they can be embedded. For the arcs with the larger automorphism groups...

متن کامل

Complete Arcs in Steiner Triple Systems

A complete arc in a design is a set of elements which contains no block, and is maximal with respect to this property. The spectrum of sizes of complete arcs in Steiner triple systems is determined without exception here.

متن کامل

Small Complete Arcs in Projective Planes

In the late 1950’s, B. Segre introduced the fundamental notion of arcs and complete arcs [48, 49]. An arc in a finite projective plane is a set of points with no three on a line and it is complete if cannot be extended without violating this property. Given a projective plane P, determining n(P), the size of its smallest complete arc, has been a major open question in finite geometry for severa...

متن کامل

On Complete Arcs Arising from Plane Curves

We point out an interplay between Fq-Frobenius non-classical plane curves and complete (k, d)-arcs in P2(Fq). A typical example that shows how this works is the one concerning an Hermitian curve. We present some other examples here which give rise to the existence of new complete (k, d)-arcs with parameters k = d(q − d + 2) and d = (q − 1)/(q − 1), q being a power of the characteristic. In addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 2011

ISSN: 1063-8539

DOI: 10.1002/jcd.20293